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ABSTRACT 

We prove that the Hardy-Littlewood maximal operator is bounded in the 

Sobolev space WI,p(R n) for 1 < p _< co. As an application we study 

a weak type inequality for the Sobolev capacity. We also prove that 

the Hardy-Littlewood maximal function of a Sobolev function is quasi- 

continuous. 

1. I n t r o d u c t i o n  

The Hardy-Littlewood maximal function A/l f :  R n -+ [0, co] of a locally inte- 

grable function f :  R n --+ [-oo, oo] is defined by 

1 / s  If(Y)] dy, (1.1) A/If(x) -- sup [B(x,r)[ (x,r) 

where the supremum is over all radii r > 0. Here [B(x,r)l denotes the volume 

of the ball B(x, r). The maximal function is a classical tool in harmonic analysis 

but recently it has been successfully used in studying Sobolev functions and 

partial differential equations, see [1] and [4]. The celebrated theorem of Hardy, 

Littlewood and Wiener asserts that the maximal operator is bounded in LB(R n) 

for 1 < p  <_ oo, 

(1.2) IIMfllp < Apllfllp, 

where the constant Ap depends only on p and n, see [5, Theorem 1.1]. This 

theorem is one of the cornerstones of harmonic analysis but the applications 
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to Sobolev functions and to partial differential equations indicate that  it would 

also be useful to know how the maximal operator preserves the differentiability 

properties of functions. It  is easy to show that  maximal function of a Lipschitz 

function is again Lipschitz and hence, in that  case, by Rademacher 's  theorem 

it is differentiable almost everywhere. Unfortunately, the maximal function of 

a differentiable function is not differentiable in general. The reason for this is 

twofold. First, the modulus of a differentiable function is not differentiable and, 

even though the function would not change signs, the supremum of differentiable 

functions may fail to be differentiable. The purpose of this note is to show that ,  

however, certain weak differentiability properties are preserved under the maxi- 

mal operator. Our main theorem is that  the Hardy-Lit t lewood maximal operator 

is bounded in the Sobolev space WI 'P(R n) for 1 < p ~_ ~c and hence, in that  

case, it has classical partial derivatives almost everywhere. The corresponding 

result for p = 1 fails because then we don' t  have the Hardy-Li t t lewood-Wiener  

theorem available. 

Recall, that  the Sobolev space WI,P(Rn),  1 <_ p < oc consists of functions 

u E LP(R") ,  whose first weak partial derivatives Diu, i = 1, 2 , . . . ,  n, belong to 

LP(Rn). We endow WI 'P (R  n) with the norm 

(1.3) Ilull ,p = Ilull,, + IIn ir , 

where Du -- (Dlu, D2u . . . .  ,Dnu) is the weak gradient of u. For the basic 

properties of Sobolev functions we refer to [3, Chapter 7]. Now we are ready 

to formulate our main result. 

1.4. THEOREM: Let 1 < p < oc. I f u  E Wa'P(R ' ) ,  then .Mu C WI'p(R n) and 

(1.5) [DiAdu[ <_AdD, u, i =  l , 2 , . . . , n ,  

almost everywhere in R n. 

2. T h e  p r o o f  of  T h e o r e m  1.4 

If XB(0,r) is the characteristic function of B(0, r) and 

XB(O,,-) 
x, IB(o, )l' 

then 

1 f s  lu(Y)l dy = lul * Xr(x), IB(x,r)l (=,r) 



Vol. 100, 1997 H A R D Y - L I T T L E W O O D  MAXIMAL F U N C T I O N  119 

where * denotes the convolution. Now l u l .  k~ E WI 'P (R  ~) and 

Di(lul*k,)=X, .*Di]ul ,  i = 1 , 2 , . . . , n ,  

almost everywhere in R ". Let r j ,  j = 1,2 . . . . .  be an enumerat ion of positive 

rationals. Since u is locally integrable, we may restrict  ourselves in definition 

(1.1) to the positive rat ional  radii. Hence 

~Au(x) = sup(lu I • X,j)(x).  
J 

We define functions vk: R ~ + R, k = 1, 2 , . . . ,  by 

vk(x) -- max ([u[ * X,~)(x). 
l___j <_k" ' 

Now ('vk) is an increasing sequence of functions in WI 'P (R  n) [3, Lemma 7.6] 

which converges to ~4u  pointwise and 

IDiv~l <_ max IDi(lul * X~,)I 
l<_j<_k 

(2.1) 
= max IX., * Dilull < MD,  lul = MDiu,  l<_j<_k 

i = 1, 2 . . . .  , n, almost everywhere in a n. Here we also used the fact tha t  

[Di l u][ = [Oiu[, i = 1, 2 . . . .  , n, almost everywhere. Thus 

HOvk][P <- [IO~vkllp <- E IIMO~ullp 
i=--1 i = l  

and the Hardy-L i t t l ewood-Wiener  inequality (1.2) implies 

Ilvklll,p <_ IlMUllp + ~ I[./t4P~ul[p 
i=1 

n 

<_ J1,ilu[] p + Ap E [IDiuIlP <- c < oc 
i=1  

for every k = 1 , 2 , . . .  Hence (vk) is a bounded sequence in WI ,p (R  n) which 

converges to ~4u  pointwise. The weak compactness of Sobolev spaces implies 

A4u E WI 'p (R~) ,  vk converges to A/lu weakly in LP(R  ~) and Divk converges to 

DiA, tu weakly in LP(R~).  Since IDivk] < .MD~u almost everywhere by (2.1), 

the weak convergence implies 

[DiA~u[ <_ AAD~u, i = 1,2, . . . ,n ,  

almost everywhere in R ~. | 
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2.2. Remarks: (i) If we only want to prove that A4u E WI'P(R~), 1 < p < c~, 

whenever u belongs to WI'P(R~), there is a simple proof based on the char- 

acterization of WI'p(R ~) by integrated difference quotients, see [3, 7.11]. If 

f :  R ~ ~ [-oz, ~ ]  and h C R ~, h ¢ 0, we denote 

(2.3) A: a "  -~ [ -~ ,  ~], A(x) = / ( x  + h). 

The sublinearity of the maximal operator implies [A4(Uh) --A4u[ <_ M(Uh --u) 

and hence 

I I ( M ~ ) ~  - M u l l , ,  = I I M ( , ~ )  - M ~ I I p  < I IM ( ' ~h  - u) l [~ 

< Apll'.,,~ - ull, < A~IID~II~Ihl, 

from which the claim follows using [3, Lemma 7.24]. Unfortunately, this argument 

does not seem to give the pointwise inequality (1.5) for the partial derivatives. 

(ii) Inequality (1.5) implies 

(2.4) I D M u ( : ~ ) I  _< MIDul(x) 

almost every x E R n. To see this, let x E R ". If IDA4u(x)l = 0, then the claim is 

obvious. Hence we may assume that ]DA4u(x)l =/: O. Now DhU = Du.h for every 

h C R ~ with ]h[ = 1, where Dh denotes the derivative to the direction h. We 

choose h = DA4u(x)/]DA4u(x)] and rotate the coordinates so that h coincides 

with some of the coordinate directions, we get 

IDA4u(x)l = IDnMu(x)l <_ MDhu(x) <_ MIDul(x). 

Now we may use the Hardy-Littlewood-Wiener theorem together with (2.4) and 

obtain 

I[Mull~,, = IIM~ll, + []DMu[Ip ~ Apllullp + []MIDulllp ~ Apl]ul[1,p, 

where Ap is the constant in (1.2). 

(iii) If u E WI '~(Rn) ,  then a slight modification of our proof shows that A4u 

belongs to W I '~(R~).  Moreover, 

[IMu][1,~ = []Mu][oo -4-[IDMu[]oo <_ Ilull~ + []MIDul[l~ ~ Ilullx,~. 
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Recall, that after a redefinition on a set of measure zero u E WI'~°(R~) is 

bounded and Lipschitz continuous. If we are not interested in pointwise es- 

timates, there is a simple proof of the fact that the maximal function maps 

bounded Lipschitz continuous functions into themselves. Indeed, suppose that u 

is Lipschitz continuous with constant L, that is 

lUh(X) --U(X)I <_ Llhl 

for every x, h E R '~ where Uh is defined by (2.3). The same argument as in (i) 

shows that 

f ( M ~ ) h ( x )  - M u ( ~ ) l  = I M ( u h ) ( x )  - M ~ ( x ) f  _< M ( ~ h  - ~ ) ( x )  

= sup luh(y)  - u(y)[  dy < Llhl, 
,~>o IB(x,r)] (~,~) 

which means that the maximal function is Lipschitz continuous with constant L. 

Observe, that this proof applies to H61der continuous functions as well. 

(iv) Finally we remark that our method applies to other maximal and maximal 

singular integral operators as well. 

3. A capacity inequality 

We show that a weak type inequality for the Sobolev capacity follows immediately 

from our Theorem 1.4. The standard proof depends on some extension properties 

of Sobolev functions, see [2]. Let 1 < p < oc. The Sobolev p-capacity of the set 

E C R ~ is defined by 

C p ( E ) =  inf f (lul p +IDul p) dx, 
ueA(E) dR~ 

where 

A(E)  = {u E WI 'P(R n) : u _> 1 on a neighbourhood of E}.  

If ,4(E) = 0, we set. Cp(E) = c~. The Sobolev p-capacity is a monotone and a 

countably subadditive set function [2]. Let u E WI'p(Rn),  suppose that & > 0 

and denote 

E~ = { x  c Rn: Mu(x)  > A}. 
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Then  E~ is open and Adu/A is admissible for Ea.  Using (2.4) we get 

1 L (['MulP + [D'Mu[V) dx c; < V 

(3.1) _< A--~PPAP £ ,  ([ulp + [DulY) dx 

A p p p 
<_ VII III, . 

This inequali ty can be used in s tudying the pointwise behaviour  of Sobolev fimc- 

tions by the s tandard  methods,  see [2], but  we shall use it to prove tha t  the 

Ha rdy -L i t t l ewood  max imal  function of a Sobolev function is quasicontinuous. 

4. Quas icont inui ty  

First  we recall some terminology. A proper ty  holds p-quasieverywhere if it holds 

outside a set of the Sobolev p-capaci ty  zero. A function u is p -quasicontinuous 

in R n if for every ¢ > 0 there is a set F such tha t  Cp(F)  < s and the restr ict ion 

of u to R "  \ F is continuous and finite. I t  is well known tha t  each Sobolev 

funct ion has a quasicontinuous representative,  see [2]. To be more precise, for 

each u E IV I 'P(R"  ) there is a p-quasicontinuous function v E W 1,p ( R ' )  such tha t  

v = u a.e. in R ' .  Moreover, this representat ive is unique in the following sense: 

If  v and w are p-quasicontinuous and v = w a.e., then w = u p-quasieverywhere 

in R ~. 

4.1. THEOREM: If u C WI'p(Rn), 1 < p < oc, then M u  is p-quasicontinuous. 

Proo~ We begin with showing tha t  i f u  E C(R')nLP(R'~), then M u  E C ( R ' * ) n  

LB(R~).  Indeed, if x, h ~ R ~ and ~ > 0, then there is r~ < c~ such tha t  

1 /B 'uh(y)--u(y) 'dY< ( 1  /B ]uh(y)--u(y)'Pdy) 1/p 
IB(x,r)l (~,~) - I B ( x , r ) l  (~,~/ 

-< N2; ? -Imx, /I, 
whenever  r > r~. On the other  hand, if 0 < r _< r~, then there is ~ > 0 such tha t  

1 ~ luh(y) -u(y) Idy< sup ] u h - u  I < e  
[B(x,r)l (~,~) - B( ..... ) 

whenever  Ih[ < 5. Thus  Ad(Uh - u)(x) <_ e for Ihl < (~ and 

[ (Mu)h(x)  - M u ( x ) [  <_ M(Uh - u)(x) <_ 
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whenever Ih[ < (~. This shows that  A/lu is continuous at x. 

Suppose then tha t  u E WI'p(R n) and let ( ~ )  be a sequence of functions 

~i E C ~ ( R n ) ,  i = 1 , 2 , . . . ,  so tha t  ~ ~ u in W~'P(R~).  By the weak type 

inequality (3.1) there is a set F with Cp(F)  = 0 so tha t  A/tu is finite in R "  \ F .  

We choose a subsequenee, which is denoted by (~i), such tha t  

l l~  - ~llf,p < (4~Ap) -p.  

Set Ei = {x  E R ~ \ F: A4(~2i - u) (x)  > 2- i} ,  i = 1,2 . . . .  Then using inequality 

(3.1) we get 

Cp(Ei)  <_ 2 ' P A ~ I I ~  - ull~,~ <- 2 - ~ .  

If  Fj = Ui~=j Ei,  then by subaddit ivi ty 

<2)0 

Cp(Fj)  _< E 2-'p < 
i=j 

and hence l i m j ~  Cp(Fj)  = 0. Moreover, for x E R n \ Fj we have 

IM~ , (x )  - M u ( x ) l  < M ( ~  - u)(x)  < 2 -~ 

whenever i > j ,  which shows tha t  the convergence is uniform in R n \ Fj.  As a 

uniform limit of continuous functions AAu is continuous in R n \ Fj.  This implies 

tha t  Aau is p-quasicontinuous. | 

4.2. Remark:  If  p > n, then every non-empty set has a positive p - c a p a c i t y  and 

hence the maximal  function of a function u E Wa 'P (R  n) is continuous. In fact, 

by the Sobolev imbedding theorem [3, Theorem 7.17] it is HSlder continuous, 

t(Mu)h(x) - M~(x)l <_ clhl 1-nIp 

for every x, h E R n. If  p = cx~, the maximal  function is Lipschitz continuous. 
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